Autor: |
Yulin Cheng, Jing Gao |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
AIMS Mathematics, Vol 9, Iss 9, Pp 25232-25252 (2024) |
Druh dokumentu: |
article |
ISSN: |
2473-6988 |
DOI: |
10.3934/math.20241231?viewType=HTML |
Popis: |
In this paper, an augmented memoryless BFGS quasi-Newton method was proposed for solving unconstrained optimization problems. Based on a new modified secant equation, an augmented memoryless BFGS update formula and an efficient optimization algorithm were established. To improve the stability of the numerical experiment, we obtained the scaling parameter by minimizing the upper bound of the condition number. The global convergence of the algorithm was proved, and numerical experiments showed that the algorithm was efficient. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|