Electrically and mechanically driven rotation of polar spirals in a relaxor ferroelectric polymer

Autor: Mengfan Guo, Erxiang Xu, Houbing Huang, Changqing Guo, Hetian Chen, Shulin Chen, Shan He, Le Zhou, Jing Ma, Zhonghui Shen, Ben Xu, Di Yi, Peng Gao, Ce-Wen Nan, Neil. D. Mathur, Yang Shen
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Nature Communications, Vol 15, Iss 1, Pp 1-9 (2024)
Druh dokumentu: article
ISSN: 2041-1723
DOI: 10.1038/s41467-023-44395-5
Popis: Abstract Topology created by quasi-continuous spatial variations of a local polarization direction represents an exotic state of matter, but field-driven manipulation has been hitherto limited to creation and destruction. Here we report that relatively small electric or mechanical fields can drive the non-volatile rotation of polar spirals in discretized microregions of the relaxor ferroelectric polymer poly(vinylidene fluoride-ran-trifluoroethylene). These polar spirals arise from the asymmetric Coulomb interaction between vertically aligned helical polymer chains, and can be rotated in-plane through various angles with robust retention. Given also that our manipulation of topological order can be detected via infrared absorption, our work suggests a new direction for the application of complex materials.
Databáze: Directory of Open Access Journals