Non-equilibrium steady state of a driven levitated particle with feedback cooling

Autor: Jan Gieseler, Lukas Novotny, Clemens Moritz, Christoph Dellago
Jazyk: angličtina
Rok vydání: 2015
Předmět:
Zdroj: New Journal of Physics, Vol 17, Iss 4, p 045011 (2015)
Druh dokumentu: article
ISSN: 1367-2630
DOI: 10.1088/1367-2630/17/4/045011
Popis: Laser trapped nanoparticles have been recently used as model systems to study fundamental relations holding far from equilibrium. Here we study a nanoscale silica sphere levitated by a laser in a low density gas. The center of mass motion of the particle is subjected, at the same time, to feedback cooling and a parametric modulation driving the system into a non-equilibrium steady state. Based on the Langevin equation of motion of the particle, we derive an analytical expression for the energy distribution of this steady state showing that the average and variance of the energy distribution can be controlled separately by appropriate choice of the friction, cooling and modulation parameters. Energy distributions determined in computer simulations and measured in a laboratory experiment agree well with the analytical predictions. We analyze the particle motion also in terms of the quadratures and find thermal squeezing depending on the degree of detuning.
Databáze: Directory of Open Access Journals