Autor: |
Jun-ichi Kadokawa, Yuki Wada, Kazuya Yamamoto |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
Molecules, Vol 26, Iss 9, p 2595 (2021) |
Druh dokumentu: |
article |
ISSN: |
1420-3049 |
DOI: |
10.3390/molecules26092595 |
Popis: |
In this study, we attempted to prepare an amylose-oligo[(R)-3-hydroxybutyrate] (ORHB) inclusion complex using a vine-twining polymerization approach. Our previous studies indicated that glucan phosphorylase (GP)-catalyzed enzymatic polymerization in the presence of appropriate hydrophobic guest polymers produces the corresponding amylose–polymer inclusion complexes, a process named vine-twining polymerization. When vine-twining polymerization was conducted in the presence of ORHB under general enzymatic polymerization conditions (45 °C), the enzymatically produced amylose did not undergo complexation with ORHB. However, using a maltotriose primer in the same polymerization system at 70 °C for 48 h to obtain water-soluble amylose, called single amylose, followed by cooling the system over 7 h to 45 °C, successfully induced the formation of the inclusion complex. Furthermore, enzymatic polymerization initiated from a longer primer under the same conditions induced the partial formation of the inclusion complex. The structures of the different products were analyzed by X-ray diffraction, 1H-NMR, and IR measurements. The mechanism of formation of the inclusion complexes discussed in the study is proposed based on the additional experimental results. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|