Un Modelo Matemático SIR-D Segmentado para la Dinámica de Propagación del Coronavirus (COVID-19) en el Perú

Autor: Neisser Pino Romero, Percy Soto-Becerra, Ricardo Angelo Quispe Mendizábal
Jazyk: Spanish; Castilian
Rok vydání: 2020
Předmět:
Zdroj: Selecciones Matemáticas, Vol 7, Iss 01, Pp 162-171 (2020)
Druh dokumentu: article
ISSN: 2411-1783
DOI: 10.17268/sel.mat.2020.01.15
Popis: The present study proposes the use of a segmented SIR-D mathematical model to predict the evolution of epidemiological populations of interest in the COVID-19 pandemic (Susceptible [S], Infected [I], Recovered [R] and dead [D]), information that is often key to guiding decision-making in the fight against epidemics. In order to obtain a better model calibration and a lower prediction error in the short term, we performed the model segmentation in 6 stages of periods of 14 days each. At each stage, the epidemiological that define the system of equations are empirically estimated by linear regression of the epidemiological surveillance data that the Peruvian Ministry of Health collects and reports daily. This strategy showed better model calibration compared to an unsegmented SIR-D model.
Databáze: Directory of Open Access Journals