Autor: |
Li-Na Cao, Guofeng Yao |
Jazyk: |
angličtina |
Rok vydání: |
2019 |
Předmět: |
|
Zdroj: |
Mathematics, Vol 7, Iss 9, p 787 (2019) |
Druh dokumentu: |
article |
ISSN: |
2227-7390 |
DOI: |
10.3390/math7090787 |
Popis: |
A differential equation of panel vibration in supersonic flow is established on the basis of the thin-plate large deflection theory under the assumption of a quasi-steady temperature field. The equation is dimensionless, and the derivation of its second-order Galerkin discretization yields a four-dimensional system. The algebraic criterion of the Hopf bifurcation is applied to study the motion stability of heated panels in supersonic flow. We provide a supplementary explanation for the proof process of a theorem, and analytical expressions of flutter dynamic pressure and panel vibration frequencies are derived. The conclusion is that the algebraic criterion of Hopf bifurcation can be applied in high-dimensional problems with many parameters. Moreover, the computational intensity of the method established in this work is less than that of conventional eigenvalue computation methods using parameter variation. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|