Autor: |
Yunfei Zhao, Caifu Qian, Guangzhi Shi, Mu Li, Zaoyang Qiu, Baohe Zhang, Zhiwei Wu |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Energies, Vol 17, Iss 14, p 3471 (2024) |
Druh dokumentu: |
article |
ISSN: |
1996-1073 |
DOI: |
10.3390/en17143471 |
Popis: |
The pre-cooling of a large LNG storage tank involves complex phenomena such as heat transfer, low-temperature flow, gas displacement, and vaporization. The whole pre-cooling process could take up to 50 h. For large-scale, full-capacity storage tanks, it is particularly important to accurately control the pre-cooling temperature. Digital twin technology can characterize and predict the full life cycle parameters from the beginning of pre-cooling development to the end and even the appearance of damage in real time. The construction of a digital twin platform requires a large number of data samples in order to predict the operating state of the device. Therefore, a simulation method with high computational efficiency for the pre-cooling process of LNG tanks is of great importance. In this paper, the mixture model and discrete phase model (DPM) are applied to simulate the pre-cooling process of a large LNG full-capacity tank. Following Euler–Lagrange, the DPM greatly simplifies the solution process. Compared with the experimental results, the maximum error of the DPM simulation results is less than 11%. Such a highly efficient simulation method for the large LNG full-capacity storage tank can make it possible to build the digital twin platform that needs hundreds of data model samples. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|