Autor: |
Mahouton Norbert Hounkonnou, Mahougnon Justin Landalidji, Melanija Mitrović |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Universe, Vol 8, Iss 4, p 247 (2022) |
Druh dokumentu: |
article |
ISSN: |
2218-1997 |
DOI: |
10.3390/universe8040247 |
Popis: |
We show that a Minkowski phase space endowed with a bracket relatively to a conformable differential realizes a Poisson algebra, confering a bi-Hamiltonian structure to the resulting manifold. We infer that the related Hamiltonian vector field is an infinitesimal Noether symmetry, and compute the corresponding deformed recursion operator. Besides, using the Hamiltonian–Jacobi separability, we construct recursion operators for Hamiltonian vector fields in conformable Poisson–Schwarzschild and Friedmann–Lemaître–Robertson–Walker (FLRW) manifolds, and derive the related constants of motion, Christoffel symbols, components of Riemann and Ricci tensors, Ricci constant and components of Einstein tensor. We highlight the existence of a hierarchy of bi-Hamiltonian structures in both the manifolds, and compute a family of recursion operators and master symmetries generating the constants of motion. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|