Interactive Realizability and the elimination of Skolem functions in Peano Arithmetic

Autor: Federico Aschieri, Margherita Zorzi
Jazyk: angličtina
Rok vydání: 2012
Předmět:
Zdroj: Electronic Proceedings in Theoretical Computer Science, Vol 97, Iss Proc. CL&C 2012, Pp 1-18 (2012)
Druh dokumentu: article
ISSN: 2075-2180
DOI: 10.4204/EPTCS.97.1
Popis: We present a new syntactical proof that first-order Peano Arithmetic with Skolem axioms is conservative over Peano Arithmetic alone for arithmetical formulas. This result – which shows that the Excluded Middle principle can be used to eliminate Skolem functions – has been previously proved by other techniques, among them the epsilon substitution method and forcing. In our proof, we employ Interactive Realizability, a computational semantics for Peano Arithmetic which extends Kreisel's modified realizability to the classical case.
Databáze: Directory of Open Access Journals