Autor: |
Federico Aschieri, Margherita Zorzi |
Jazyk: |
angličtina |
Rok vydání: |
2012 |
Předmět: |
|
Zdroj: |
Electronic Proceedings in Theoretical Computer Science, Vol 97, Iss Proc. CL&C 2012, Pp 1-18 (2012) |
Druh dokumentu: |
article |
ISSN: |
2075-2180 |
DOI: |
10.4204/EPTCS.97.1 |
Popis: |
We present a new syntactical proof that first-order Peano Arithmetic with Skolem axioms is conservative over Peano Arithmetic alone for arithmetical formulas. This result – which shows that the Excluded Middle principle can be used to eliminate Skolem functions – has been previously proved by other techniques, among them the epsilon substitution method and forcing. In our proof, we employ Interactive Realizability, a computational semantics for Peano Arithmetic which extends Kreisel's modified realizability to the classical case. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|