Autor: |
Jiyuan Fang, Cliburn Chan, Kouros Owzar, Liuyang Wang, Diyuan Qin, Qi-Jing Li, Jichun Xie |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Genome Biology, Vol 23, Iss 1, Pp 1-28 (2022) |
Druh dokumentu: |
article |
ISSN: |
1474-760X |
DOI: |
10.1186/s13059-022-02825-5 |
Popis: |
Abstract Most single-cell RNA sequencing (scRNA-seq) analyses begin with cell clustering; thus, the clustering accuracy considerably impacts the validity of downstream analyses. In contrast with the abundance of clustering methods, the tools to assess the clustering accuracy are limited. We propose a new Clustering Deviation Index (CDI) that measures the deviation of any clustering label set from the observed single-cell data. We conduct in silico and experimental scRNA-seq studies to show that CDI can select the optimal clustering label set. As a result, CDI also informs the optimal tuning parameters for any given clustering method and the correct number of cluster components. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|