Autor: |
Chunming Ju, Giovanni Molica Bisci, Binlin Zhang |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Communications in Analysis and Mechanics, Vol 15, Iss 4, Pp 586-597 (2023) |
Druh dokumentu: |
article |
ISSN: |
2836-3310 |
DOI: |
10.3934/cam.2023029?viewType=HTML |
Popis: |
In this paper, we consider the following discrete fractional $ p $-Laplacian equations: $ \begin{equation*} (-\Delta_{1})^{s}_{p}u(a)+V(a)|u(a)|^{p-2}u(a) = \lambda f(a, u(a)), \; \mbox{in}\ \mathbb{Z}, \end{equation*} $ where $ \lambda $ is the parameter and $ f(a, u(a)) $ satisfies no symmetry assumption. As a result, a specific positive parameter interval is determined by some requirements for the nonlinear term near zero, and then infinitely many homoclinic solutions are obtained by using a special version of Ricceri's variational principle. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|