Autor: |
Jonathan T. Davis, Buddhinie S. Jayathilake, Swetha Chandrasekaran, Jonathan J. Wong, Joshua R. Deotte, Sarah E. Baker, Victor A. Beck, Eric B. Duoss, Marcus A. Worsley, Tiras Y. Lin |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Scientific Reports, Vol 14, Iss 1, Pp 1-12 (2024) |
Druh dokumentu: |
article |
ISSN: |
2045-2322 |
DOI: |
10.1038/s41598-024-71765-w |
Popis: |
Abstract Recent advances in 3D printing have enabled the manufacture of porous electrodes which cannot be machined using traditional methods. With micron-scale precision, the pore structure of an electrode can now be designed for optimal energy efficiency, and a 3D printed electrode is not limited to a single uniform porosity. As these electrodes scale in size, however, the total number of possible pore designs can be intractable; choosing an appropriate pore distribution manually can be a complex task. To address this challenge, we adopt an inverse design approach. Using physics-based models, the electrode structure is optimized to minimize power losses in a flow reactor. The computer-generated structure is then printed and benchmarked against homogeneous porosity electrodes. We show how an optimized electrode decreases the power requirements by 16% compared to the best-case homogeneous porosity. Future work could apply this approach to flow batteries, electrolyzers, and fuel cells to accelerate their design and implementation. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|