Autor: |
Samundra Regmi, Ioannis K. Argyros, Santhosh George, Christopher I. Argyros |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Mathematics, Vol 10, Iss 8, p 1225 (2022) |
Druh dokumentu: |
article |
ISSN: |
2227-7390 |
DOI: |
10.3390/math10081225 |
Popis: |
There are a plethora of semi-local convergence results for Newton’s method (NM). These results rely on the Newton–Kantorovich criterion. However, this condition may not be satisfied even in the case of scalar equations. For this reason, we first present a comparative study of established classical and modern results. Moreover, using recurrent functions and at least as small constants or majorant functions, a finer convergence analysis for NM can be provided. The new constants and functions are specializations of earlier ones; hence, no new conditions are required to show convergence of NM. The technique is useful on other iterative methods as well. Numerical examples complement the theoretical results. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|