Effect of Rotary Swaging on Mechanical and Operational Properties of Zn–1%Mg and Zn–1%Mg–0.1%Ca Alloys

Autor: Natalia Martynenko, Natalia Anisimova, Georgy Rybalchenko, Olga Rybalchenko, Vladimir Serebryany, Mark Zheleznyi, Maria Shinkareva, Artem Gorbenko, Diana Temralieva, Elena Lukyanova, Andrey Sannikov, Andrey Koltygin, Mikhail Kiselevskiy, Vladimir Yusupov, Sergey Dobatkin
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Metals, Vol 13, Iss 8, p 1386 (2023)
Druh dokumentu: article
ISSN: 2075-4701
DOI: 10.3390/met13081386
Popis: A study of microstructure, phase composition, mechanical properties, corrosion processes, and biocompatibility in vitro of the Zn–1%Mg and Zn–1%Mg–0.1%Ca alloys in an annealed state and after rotary swaging (RS) is presented. Partially recrystallized microstructure is formed in the studied alloys after RS at 200 °C. RS reduces the mass fraction of intermetallic phases in comparison with annealed states of the alloys. RS at 200 °C increases the strength of the Zn–1%Mg and Zn–1%Mg–0.1%Ca alloys up to 248 ± 9 and 249 ± 9 with the growth of ductility up to 10.3 ± 3% and 14.2 ± 0.9%, respectively. The structure after RS at 200 °C does not lead to a change in the corrosion resistance of the studied alloys. However, an increase in the incubation period of the alloys in a growth medium slows down the degradation process due to the formation of a film consisting of degradation products. Rotary swaging does not impair the biocompatibility of the Zn–1%Mg and Zn–1%Mg alloys, maintaining the viability and integrity of blood cells, preventing hemolysis, and ensuring the adhesion and proliferation of osteogenic cells on the surface of samples.
Databáze: Directory of Open Access Journals