On the integrable deformations of a system related to the motion of two vortices in an ideal incompressible fluid

Autor: Lăzureanu Cristian, Hedrea Ciprian, Petrişor Camelia
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: ITM Web of Conferences, Vol 29, p 01015 (2019)
Druh dokumentu: article
ISSN: 2271-2097
DOI: 10.1051/itmconf/20192901015
Popis: Altering the first integrals of an integrable system integrable deformations of the given system are obtained. These integrable deformations are also integrable systems, and they generalize the initial system. In this paper we give a method to construct integrable deformations of maximally superintegrable Hamiltonian mechanical systems with two degrees of freedom. An integrable deformation of a maximally superintegrable Hamiltonian mechanical system preserves the number of first integrals, but is not a Hamiltonian mechanical system, generally. We construct integrable deformations of the maximally superintegrable Hamiltonian mechanical system that describes the motion of two vortices in an ideal incompressible fluid, and we show that some of these integrable deformations are Hamiltonian mechanical systems too.
Databáze: Directory of Open Access Journals