Ionospheric and Meteorological Anomalies Associated with the Earthquake in Central Asia on 22 January 2024
Autor: | Renata Lukianova, Gulbanu Daurbayeva, Akgenzhe Siylkanova |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2024 |
Předmět: | |
Zdroj: | Remote Sensing, Vol 16, Iss 17, p 3112 (2024) |
Druh dokumentu: | article |
ISSN: | 16173112 2072-4292 |
DOI: | 10.3390/rs16173112 |
Popis: | On 22 January 2024, at 18 UT, a strong earthquake (EQ), Mw = 7, occurred with the epicenter at 41°N, 79°E. This seismic event generated a complex response, the elements of which correspond to the concept of lithosphere–atmosphere–ionosphere coupling through electromagnetic processes. While flying over the EQ area on the night-ide of the Earth, the tandem of low-orbiting Swarm satellites observed small-scale irregularities in the plasma density with an amplitude of ~1.5 × 104 el/cm3, which are likely associated with the penetration of the coseismic electric field into the ionosphere. The local anomaly was detected against the background of a global increase in total electron content, TEC (although geomagnetic indices remained quiet), since the moment of EQ coincided with the ionospheric response to a solar flare. In the troposphere, specific humidity decreased while latent heat flux and aerosol optical depth increased, all exhibiting the co-located disturbances that can be attributed to the effect of increased air ionization rates, resulting in greater electrical conductivity in the near-Earth boundary layer. Anomalies started developing over the epicenter the day before and maximized on the day of the main shock and aftershocks. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |