Infinite series involving harmonic numbers and reciprocal of binomial coefficients

Autor: Kwang-Wu Chen, Fu-Yao Yang
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: AIMS Mathematics, Vol 9, Iss 7, Pp 16885-16900 (2024)
Druh dokumentu: article
ISSN: 2473-6988
DOI: 10.3934/math.2024820?viewType=HTML
Popis: Yamamoto's integral was the integral associated with 2-posets, which was first introduced by Yamamoto. In this paper, we obtained the values of infinite series involving harmonic numbers and reciprocal of binomial coefficients by using some techniques of Yamamoto's integral. We determine the value of infinite series of the form: $ \sum\limits_{m_1,\ldots,m_n,\ell_1,\ldots,\ell_k\geq 1}\frac{H_{m_1}^{(a_1)}\cdots H_{m_n}^{(a_n)}} {m_1^{b_1}\cdots m_n^{b_n}\ell_1^{c_1}\cdots\ell_k^{c_k} \binom{m_1+\cdots+m_n+\ell_1+\cdots+\ell_k}{\ell_k}}, $ in terms of a finite sum of multiple zeta values, for positive integers $ a_1, \ldots, a_n, b_1, \ldots, b_n, c_1, \ldots, c_k $.
Databáze: Directory of Open Access Journals