Stratification of hospitalized COVID-19 patients into clinical severity progression groups by immuno-phenotyping and machine learning

Autor: Yvonne M. Mueller, Thijs J. Schrama, Rik Ruijten, Marco W. J. Schreurs, Dwin G. B. Grashof, Harmen J. G. van de Werken, Giovanna Jona Lasinio, Daniel Álvarez-Sierra, Caoimhe H. Kiernan, Melisa D. Castro Eiro, Marjan van Meurs, Inge Brouwers-Haspels, Manzhi Zhao, Ling Li, Harm de Wit, Christos A. Ouzounis, Merel E. P. Wilmsen, Tessa M. Alofs, Danique A. Laport, Tamara van Wees, Geoffrey Kraker, Maria C. Jaimes, Sebastiaan Van Bockstael, Manuel Hernández-González, Casper Rokx, Bart J. A. Rijnders, Ricardo Pujol-Borrell, Peter D. Katsikis
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Nature Communications, Vol 13, Iss 1, Pp 1-13 (2022)
Druh dokumentu: article
ISSN: 2041-1723
DOI: 10.1038/s41467-022-28621-0
Popis: Developing predictive methods to identify patients with high risk of severe COVID-19 disease is of crucial importance. Authors show here that by measuring anti-SARS-CoV-2 antibody and cytokine levels at the time of hospital admission and integrating the data by unsupervised hierarchical clustering/machine learning, it is possible to predict unfavourable outcome.
Databáze: Directory of Open Access Journals