Application of the Parabola Method in Nonconvex Optimization

Autor: Anton Kolosnitsyn, Oleg Khamisov, Eugene Semenkin, Vladimir Nelyub
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Algorithms, Vol 17, Iss 3, p 107 (2024)
Druh dokumentu: article
ISSN: 1999-4893
DOI: 10.3390/a17030107
Popis: We consider the Golden Section and Parabola Methods for solving univariate optimization problems. For multivariate problems, we use these methods as line search procedures in combination with well-known zero-order methods such as the coordinate descent method, the Hooke and Jeeves method, and the Rosenbrock method. A comprehensive numerical comparison of the obtained versions of zero-order methods is given in the present work. The set of test problems includes nonconvex functions with a large number of local and global optimum points. Zero-order methods combined with the Parabola method demonstrate high performance and quite frequently find the global optimum even for large problems (up to 100 variables).
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje