Fully integrable one-dimensional nonlinear wave equation: Solution of a general initial value problem

Autor: E.V. Trifonov
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Partial Differential Equations in Applied Mathematics, Vol 5, Iss , Pp 100268- (2022)
Druh dokumentu: article
ISSN: 2666-8181
DOI: 10.1016/j.padiff.2022.100268
Popis: A new integrable case of the one-dimensional nonlinear wave equation was found. A general solution for this case depending on two arbitrary functions was derived. The functional form of the speed of sound can be used to model weak nonlinear waves in non-dispersive media. For the initial value problem the nonlinear generalization of the d’Alembert’s formula was obtained.
Databáze: Directory of Open Access Journals