Predicting FOXM1-Mediated Gene Regulation through the Analysis of Genome-Wide FOXM1 Binding Sites in MCF-7, K562, SK-N-SH, GM12878 and ECC-1 Cell Lines

Autor: Keunsoo Kang, Yoonjung Choi, Hoo Hyun Kim, Kyung Hyun Yoo, Sungryul Yu
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: International Journal of Molecular Sciences, Vol 21, Iss 17, p 6141 (2020)
Druh dokumentu: article
ISSN: 1422-0067
1661-6596
DOI: 10.3390/ijms21176141
Popis: Forkhead box protein M1 (FOXM1) is a key transcription factor (TF) that regulates a common set of genes related to the cell cycle in various cell types. However, the mechanism by which FOXM1 controls the common gene set in different cellular contexts is unclear. In this study, a comprehensive meta-analysis of genome-wide FOXM1 binding sites in ECC-1, GM12878, K562, MCF-7, and SK-N-SH cell lines was conducted to predict FOXM1-driven gene regulation. Consistent with previous studies, different TF binding motifs were identified at FOXM1 binding sites, while the NFY binding motif was found at 81% of common FOXM1 binding sites in promoters of cell cycle-related genes. The results indicated that FOXM1 might control the gene set through interaction with the NFY proteins, while cell type-specific genes were predicted to be regulated by enhancers with FOXM1 and cell type-specific TFs. We also found that the high expression level of FOXM1 was significantly associated with poor prognosis in nine types of cancer. Overall, these results suggest that FOXM1 is predicted to function as a master regulator of the cell cycle through the interaction of NFY-family proteins, and therefore the inhibition of FOXM1 could be an attractive strategy for cancer therapy.
Databáze: Directory of Open Access Journals