Bounds for the Differences between Arithmetic and Geometric Means and Their Applications to Inequalities
Autor: | Shigeru Furuichi, Nicuşor Minculete |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Symmetry, Vol 13, Iss 12, p 2398 (2021) |
Druh dokumentu: | article |
ISSN: | 13122398 2073-8994 |
DOI: | 10.3390/sym13122398 |
Popis: | Refining and reversing weighted arithmetic-geometric mean inequalities have been studied in many papers. In this paper, we provide some bounds for the differences between the weighted arithmetic and geometric means, using known inequalities. We improve the results given by Furuichi-Ghaemi-Gharakhanlu and Sababheh-Choi. We also give some bounds on entropies, applying the results in a different approach. We explore certain convex or concave functions, which are symmetric functions on the axis t=1/2. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |