Autor: |
Pilhyeon Ju, Sungyeol Choi, Jongho Lee |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Nuclear Engineering and Technology, Vol 56, Iss 8, Pp 3369-3377 (2024) |
Druh dokumentu: |
article |
ISSN: |
1738-5733 |
DOI: |
10.1016/j.net.2024.03.037 |
Popis: |
As the realization of carbon neutrality has been a main assignment for coping with the global climate change, it became necessary to analyze upcoming changes in electricity mix with economic and technical viewpoints. This paper presents a newly-developed simulation model that reflects the daily intermittency of renewable energy by applying daily average power supply-demand patterns for each season. Also, the paper provides an economic analysis in the viewpoint of investment cost, annual cost and power generation cost by utilizing the calculations from the simulation model. Four scenarios are selected for the analyses, one based on the Korean Government's 2050 Carbon Neutrality Scenario and three Nuclear Power Build-up scenarios, which are newly suggested by the authors. The simulation results show that the increase of nuclear energy from 5.7% of Government's Scenario to 37.7% of the proposed Nuclear Power Build-up Scenario leads to the decrease of about 704 billion US$ in investment cost and about 181 billion US$ in annual cost; with reduction in the increase of 2050 expected generation cost from 3.1 to 1.6 times compared with the referenced 2021 average cost. Further, this study has significance in performing the economic analysis with the expected daily power supply-demand patterns in 2050. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|