Probabilistic Perturbation Bounds for Invariant, Deflating and Singular Subspaces

Autor: Petko H. Petkov
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Axioms, Vol 13, Iss 9, p 597 (2024)
Druh dokumentu: article
ISSN: 2075-1680
DOI: 10.3390/axioms13090597
Popis: In this paper, we derive new probabilistic bounds on the sensitivity of invariant subspaces, deflation subspaces and singular subspaces of matrices. The analysis exploits a unified method for deriving asymptotic perturbation bounds of the subspaces under interest and utilizes probabilistic approximations of the entries of random perturbation matrices implementing the Markoff inequality. As a result of the analysis, we determine with a prescribed probability asymptotic perturbation bounds on the angles between the corresponding perturbed and unperturbed subspaces. It is shown that the probabilistic asymptotic bounds proposed are significantly less conservative than the corresponding deterministic perturbation bounds. The results obtained are illustrated by examples comparing the known deterministic perturbation bounds with the new probabilistic bounds.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje