Classification and Identification of Frequency-Hopping Signals Based on Jacobi Salient Map for Adversarial Sample Attack Approach

Autor: Yanhan Zhu, Yong Li, Tianyi Wei
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Sensors, Vol 24, Iss 21, p 7070 (2024)
Druh dokumentu: article
ISSN: 1424-8220
DOI: 10.3390/s24217070
Popis: Frequency-hopping (FH) communication adversarial research is a key area in modern electronic countermeasures. To address the challenge posed by interfering parties that use deep neural networks (DNNs) to classify and identify multiple intercepted FH signals—enabling targeted interference and degrading communication performance—this paper presents a batch feature point targetless adversarial sample generation method based on the Jacobi saliency map (BPNT-JSMA). This method builds on the traditional JSMA to generate feature saliency maps, selects the top 8% of salient feature points in batches for perturbation, and increases the perturbation limit to restrict the extreme values of single-point perturbations. Experimental results in a white-box environment show that, compared with the traditional JSMA method, BPNT-JSMA not only maintains a high attack success rate but also enhances attack efficiency and improves the stealthiness of the adversarial samples.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje