On the Properties of the Modified λ-Bernstein-Stancu Operators

Autor: Zhi-Peng Lin, Gülten Torun, Esma Kangal, Ülkü Dinlemez Kantar, Qing-Bo Cai
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Symmetry, Vol 16, Iss 10, p 1276 (2024)
Druh dokumentu: article
ISSN: 2073-8994
DOI: 10.3390/sym16101276
Popis: In this study, a new kind of modified λ-Bernstein-Stancu operators is constructed. Compared with the original λ-Bézier basis function, the newly operator basis function is more concise in form and has certain symmetry beauty. The moments and central moments are computed. A Korovkin-type approximation theorem is presented, and the degree of convergence is estimated with respect to the modulus of continuity, Peetre’s K-functional, and functions of the Lipschitz-type class. Moreover, the Voronovskaja type approximation theorem is examined. Finally, some numerical examples and graphics to show convergence are presented.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje