TFEB inhibition induces melanoma shut-down by blocking the cell cycle and rewiring metabolism

Autor: C. Ariano, F. Costanza, M. Akman, C. Riganti, D. Corà, E. Casanova, E. Astanina, V. Comunanza, F. Bussolino, G. Doronzo
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Cell Death and Disease, Vol 14, Iss 5, Pp 1-21 (2023)
Druh dokumentu: article
ISSN: 2041-4889
DOI: 10.1038/s41419-023-05828-7
Popis: Abstract Melanomas are characterised by accelerated cell proliferation and metabolic reprogramming resulting from the contemporary dysregulation of the MAPK pathway, glycolysis and the tricarboxylic acid (TCA) cycle. Here, we suggest that the oncogenic transcription factor EB (TFEB), a key regulator of lysosomal biogenesis and function, controls melanoma tumour growth through a transcriptional programme targeting ERK1/2 activity and glucose, glutamine and cholesterol metabolism. Mechanistically, TFEB binds and negatively regulates the promoter of DUSP-1, which dephosphorylates ERK1/2. In melanoma cells, TFEB silencing correlates with ERK1/2 dephosphorylation at the activation-related p-Thr185 and p-Tyr187 residues. The decreased ERK1/2 activity synergises with TFEB control of CDK4 expression, resulting in cell proliferation blockade. Simultaneously, TFEB rewires metabolism, influencing glycolysis, glucose and glutamine uptake, and cholesterol synthesis. In TFEB-silenced melanoma cells, cholesterol synthesis is impaired, and the uptake of glucose and glutamine is inhibited, leading to a reduction in glycolysis, glutaminolysis and oxidative phosphorylation. Moreover, the reduction in TFEB level induces reverses TCA cycle, leading to fatty acid production. A syngeneic BRAFV600E melanoma model recapitulated the in vitro study results, showing that TFEB silencing sustains the reduction in tumour growth, increase in DUSP-1 level and inhibition of ERK1/2 action, suggesting a pivotal role for TFEB in maintaining proliferative melanoma cell behaviour and the operational metabolic pathways necessary for meeting the high energy demands of melanoma cells.
Databáze: Directory of Open Access Journals