Autor: |
Anindita Das, Aniruddha Deka, Kishore Medhi, Manob Jyoti Saikia |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Information, Vol 15, Iss 8, p 465 (2024) |
Druh dokumentu: |
article |
ISSN: |
2078-2489 |
DOI: |
10.3390/info15080465 |
Popis: |
Handloom textile products play an essential role in both the financial and cultural landscape of natives, necessitating accurate and efficient methods for authenticating against replicated powerloom textiles for the protection of heritage and indigenous weavers’ economic viability. This paper presents a new approach to the automated identification of handloom textiles leveraging a deep metric learning technique. A labeled handloom textile dataset of 25,166 images was created by collecting handloom textile samples of six unique types, working with indigenous weavers in Assam, Northeast India. The proposed method achieved remarkable success by acquiring biased feature representations that facilitate the effective separation of different fiber types in a learned feature space. Through extensive experimentation and comparison with baseline models, our approach demonstrated superior efficiency in classifying handloom textiles with an accuracy of 97.8%. Our approach not only contributes to the preservation and promotion of traditional textile craftsmanship in the region but also highlights its significance. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|