Autor: |
Younis Abdalla, M. Tariq Iqbal, Mohamed Shehata |
Jazyk: |
angličtina |
Rok vydání: |
2019 |
Předmět: |
|
Zdroj: |
Symmetry, Vol 11, Iss 10, p 1280 (2019) |
Druh dokumentu: |
article |
ISSN: |
2073-8994 |
DOI: |
10.3390/sym11101280 |
Popis: |
Digital image forgery is a growing problem due to the increase in readily-available technology that makes the process relatively easy. In response, several approaches have been developed for detecting digital forgeries. This paper proposes a novel scheme based on neural networks and deep learning, focusing on the convolutional neural network (CNN) architecture approach to enhance a copy-move forgery detection. The proposed approach employs a CNN architecture that incorporates pre-processing layers to give satisfactory results. In addition, the possibility of using this model for various copy-move forgery techniques is explained. The experiments show that the overall validation accuracy is 90%, with a set iteration limit. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|