A regularity criterion of weak solutions to the 3D Boussinesq equations

Autor: Ahmad Mohammed Alghamdi, Sadek Gala, Maria Alessandra Ragusa
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: AIMS Mathematics, Vol 2, Iss 3, Pp 451-457 (2017)
Druh dokumentu: article
ISSN: 2473-6988
DOI: 10.3934/Math.2017.2.451/fulltext.html
Popis: In this note, a regularity criterion of weaksolutions to the 3D-Boussinesq equations with respect to Serrin type condition under the framework of Besov space $\overset{.}{B}_{\infty ,\infty}^{r}$. It is shown that the weak solution $(u,\theta )$ is regular on $%(0,T] $ if $u$ satisfies $\int\limits_{0}^{T}{\left\| u\left( \cdot ,t \right) \right\|_{\overset{\cdot R}{\mathop{{{B}_{\infty ,\infty }}}}\,}^{\frac{2}{1+r}}}\ \ dt < \infty ,$ for 0
Databáze: Directory of Open Access Journals