Modified preservation and fungalysin description for Batrachochytrium dendrobatidis

Autor: Olga Cristina Lozano Camelo, Adriana Carolina Rojas Arias, Kelly Johanna Ávila Méndez, Silvio Alejandro Lopez-Pazos
Jazyk: English<br />Spanish; Castilian
Rok vydání: 2022
Předmět:
Zdroj: La Granja: Revista de Ciencias de la Vida, Vol 36, Iss 2 (2022)
Druh dokumentu: article
ISSN: 1390-3799
1390-8596
Popis: Batrachochytrium dendrobatidis is a pathogenic fungus causing chytridiomycosis, a cutaneous affection resulting in reduction on Anura populations around the world, because of fungalysins, the most important virulence factor. The B. dendrobatidis maps (http://www.bd-maps.net/) is the dataset of information about the B. dendrobatidis -related isolates. An alternative available for reconstitution of B. dendrobatidis strains from cryopreserved cells include methods relying on the World Organization for Animal Health (OIE) protocol. Most recently, much of the interest in the B. dendrobatidis research has focused on its DNA sequencing, especially B. dendrobatidis JAM81 and B. dendrobatidis JEL423 genomes. OBJECTIVE. To evaluate a modified form from OIE protocol for B. dendrobatidis strain criopreservation, and in silico analysis of B. dendrobatidis fungalysin. OIE protocol was modified using B. dendrobatidis EV001, focused on cryopreservant concentrations, antibiotics and recovering to -80°C, and microscopic viability evaluation on Tryptone Gelatin hydrolyzed agar, besides, Bioinformatics was used for the determination of biochemical characteristics from a B. dendrobatidis JAM81 fungalysin. Modified OIE protocol was useful by viability, recovering B. dendrobatidis EV001 strain. The characterization of B. dendrobatidis JAM81 fungalysin showed a molecular weight of 85 kDa, isoelectric point of 8.33, and tertiary structure among others. This indicated that the protein is a metalloproteinase, it has a PepSY domain for protease inhibition, and a catalytic domain that destroy protein barriers.
Databáze: Directory of Open Access Journals