Designing Automated Deployment Strategies of Face Recognition Solutions in Heterogeneous IoT Platforms

Autor: Unai Elordi, Chiara Lunerti, Luis Unzueta, Jon Goenetxea, Nerea Aranjuelo, Alvaro Bertelsen, Ignacio Arganda-Carreras
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Information, Vol 12, Iss 12, p 532 (2021)
Druh dokumentu: article
ISSN: 2078-2489
DOI: 10.3390/info12120532
Popis: In this paper, we tackle the problem of deploying face recognition (FR) solutions in heterogeneous Internet of Things (IoT) platforms. The main challenges are the optimal deployment of deep neural networks (DNNs) in the high variety of IoT devices (e.g., robots, tablets, smartphones, etc.), the secure management of biometric data while respecting the users’ privacy, and the design of appropriate user interaction with facial verification mechanisms for all kinds of users. We analyze different approaches to solving all these challenges and propose a knowledge-driven methodology for the automated deployment of DNN-based FR solutions in IoT devices, with the secure management of biometric data, and real-time feedback for improved interaction. We provide some practical examples and experimental results with state-of-the-art DNNs for FR in Intel’s and NVIDIA’s hardware platforms as IoT devices.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje