On estimation of extremal entries of the principal eigenvector of a graph
Autor: | Prohelika Das, Bipanchy Buzarbarua |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2024 |
Předmět: | |
Zdroj: | AKCE International Journal of Graphs and Combinatorics, Pp 1-8 (2024) |
Druh dokumentu: | article |
ISSN: | 09728600 2543-3474 0972-8600 |
DOI: | 10.1080/09728600.2024.2411951 |
Popis: | Let [Formula: see text] be the principal eigenvector corresponding to the spectral radius [Formula: see text] of a graph G of order n. In this paper, we find some bounds on the ratio of the maximal component [Formula: see text] to the minimal component [Formula: see text] of the principal eigenvector X in terms of the graph parameters such as the independence number [Formula: see text], the minimum vertex cover number of the vertex [Formula: see text] and the chromatic number [Formula: see text]. Also, we present some bounds on the extremal component [Formula: see text] of the principal eigenvector X. An upper bound of the spectral radius [Formula: see text] of G in terms of the minimum vertex cover number [Formula: see text] and order of the graph n is also introduced in this paper. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |
načítá se...