Torus actions, Morse homology, and the Hilbert scheme of points on affine space

Autor: Burt Totaro
Jazyk: English<br />French
Rok vydání: 2021
Předmět:
Zdroj: Épijournal de Géométrie Algébrique, Vol Volume 5 (2021)
Druh dokumentu: article
ISSN: 2491-6765
DOI: 10.46298/epiga.2021.6792
Popis: We formulate a conjecture on actions of the multiplicative group in motivic homotopy theory. In short, if the multiplicative group G_m acts on a quasi-projective scheme U such that U is attracted as t approaches 0 in G_m to a closed subset Y in U, then the inclusion from Y to U should be an A^1-homotopy equivalence. We prove several partial results. In particular, over the complex numbers, the inclusion is a homotopy equivalence on complex points. The proofs use an analog of Morse theory for singular varieties. Application: the Hilbert scheme of points on affine n-space is homotopy equivalent to the subspace consisting of schemes supported at the origin.
Databáze: Directory of Open Access Journals