Autor: |
Han Xiao, Tao Zhang, Changjun Li, Yong Cao, Linfeng Wang, Huabin Chen, Shengcan Li, Changbiao Guan, Jianzhong Hu, Di Chen, Can Chen, Hongbin Lu |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
eLife, Vol 11 (2022) |
Druh dokumentu: |
article |
ISSN: |
2050-084X |
DOI: |
10.7554/eLife.73614 |
Popis: |
Proper mechanical stimulation can improve rotator cuff enthesis injury repair. However, the underlying mechanism of mechanical stimulation promoting injury repair is still unknown. In this study, we found that Prrx1+ cell was essential for murine rotator cuff enthesis development identified by single-cell RNA sequence and involved in the injury repair. Proper mechanical stimulation could promote the migration of Prrx1+ cells to enhance enthesis injury repair. Meantime, TGF-β signaling and primary cilia played an essential role in mediating mechanical stimulation signaling transmission. Proper mechanical stimulation enhanced the release of active TGF-β1 to promote migration of Prrx1+ cells. Inhibition of TGF-β signaling eliminated the stimulatory effect of mechanical stimulation on Prrx1+ cell migration and enthesis injury repair. In addition, knockdown of Pallidin to inhibit TGF-βR2 translocation to the primary cilia or deletion of Ift88 in Prrx1+ cells also restrained the mechanics-induced Prrx1+ cells migration. These findings suggested that mechanical stimulation could increase the release of active TGF-β1 and enhance the mobilization of Prrx1+ cells to promote enthesis injury repair via ciliary TGF-β signaling. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|