High-mobility solution-processed copper phthalocyanine-based organic field-effect transistors
Autor: | Nandu B Chaure, Andrew N Cammidge, Isabelle Chambrier, Michael J Cook, Markys G Cain, Craig E Murphy, Chandana Pal and Asim K Ray |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2011 |
Předmět: | |
Zdroj: | Science and Technology of Advanced Materials, Vol 12, Iss 2, p 025001 (2011) |
Druh dokumentu: | article |
ISSN: | 1468-6996 1878-5514 |
Popis: | Solution-processed films of 1,4,8,11,15,18,22,25-octakis(hexyl) copper phthalocyanine (CuPc6) were utilized as an active semiconducting layer in the fabrication of organic field-effect transistors (OFETs) in the bottom-gate configurations using chemical vapour deposited silicon dioxide (SiO2) as gate dielectrics. The surface treatment of the gate dielectric with a self-assembled monolayer of octadecyltrichlorosilane (OTS) resulted in values of 4×10−2 cm2 V−1 s−1 and 106 for saturation mobility and on/off current ratio, respectively. This improvement was accompanied by a shift in the threshold voltage from 3 V for untreated devices to -2 V for OTS treated devices. The trap density at the interface between the gate dielectric and semiconductor decreased by about one order of magnitude after the surface treatment. The transistors with the OTS treated gate dielectrics were more stable over a 30-day period in air than untreated ones. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |