Some properties of the generalized sierpiński gasket graphs

Autor: Fatemeh Attarzadeh, Ahmad Abasi, Mona Gholamnia Taleshani
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Transactions on Combinatorics, Vol 14, Iss 2, Pp 97-108 (2024)
Druh dokumentu: article
ISSN: 2251-8657
2251-8665
DOI: 10.22108/toc.2024.138919.2098
Popis: The generalized Sierpiński gasket graphs $S[G,t]$ are introduced as the graphs obtained from the Sierpiński graphs $S(G,t)$ by contracting single edges between copies of previous phases. The family $S[G,t]$ is a generalization of a previously studied class of generalized Sierpiński gasket graphs $S[n,t]$. In this paper, several properties of $S[G,t]$ are studied. In particular, adjacency of vertices, degree sequence, general first Zagreb index, hamiltonicity, and Eulerian.
Databáze: Directory of Open Access Journals