Some properties of the generalized sierpiński gasket graphs
Autor: | Fatemeh Attarzadeh, Ahmad Abasi, Mona Gholamnia Taleshani |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2024 |
Předmět: | |
Zdroj: | Transactions on Combinatorics, Vol 14, Iss 2, Pp 97-108 (2024) |
Druh dokumentu: | article |
ISSN: | 2251-8657 2251-8665 |
DOI: | 10.22108/toc.2024.138919.2098 |
Popis: | The generalized Sierpiński gasket graphs $S[G,t]$ are introduced as the graphs obtained from the Sierpiński graphs $S(G,t)$ by contracting single edges between copies of previous phases. The family $S[G,t]$ is a generalization of a previously studied class of generalized Sierpiński gasket graphs $S[n,t]$. In this paper, several properties of $S[G,t]$ are studied. In particular, adjacency of vertices, degree sequence, general first Zagreb index, hamiltonicity, and Eulerian. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |