Autor: |
Yiming Xu, Leilei Chang, Yong Chen, Zhou Dan, Li Zhou, Jiyuan Tang, Lianfu Deng, Guoqing Tang, Changwei Li |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Advanced Science, Vol 11, Iss 44, Pp n/a-n/a (2024) |
Druh dokumentu: |
article |
ISSN: |
2198-3844 |
DOI: |
10.1002/advs.202406428 |
Popis: |
Abstract Age‐related declines in self‐renewal and multipotency of bone marrow mesenchymal stem cells (BMSCs) limit their applications in tissue engineering and clinical therapy. Thus, understanding the mechanisms behind BMSC senescence is crucial for maintaining the rejuvenation and multipotent differentiation capabilities of BMSCs. This study reveals that impaired USP26 expression in BMSCs leads to mitochondrial dysfunction, ultimately resulting in aging and age‐related declines in the self‐renewal and multipotency of BMSCs. Specifically, decreased USP26 expression results in decreased protein levels of Sirtuin 2 due to its ubiquitination degradation, which leads to mitochondrial dysfunction in BMSCs and ultimately resulting in aging and age‐related declines in self‐renewal and multilineage differentiation potentials. Additionally, decreased USP26 expression in aging BMSCs is a result of dampened hypoxia‐inducible factor 1α (HIF‐1α) expression. HIF‐1α facilitates USP26 transcriptional expression by increasing USP26 promoter activity through binding to the ‐191 — ‐198 bp and ‐262 — ‐269 bp regions on the USP26 promoter. Therefore, the identification of USP26 as being correlated with aging and age‐related declines in self‐renewal and multipotency of BMSCs, along with understanding its expression and action mechanisms, suggests that USP26 represents a novel therapeutic target for combating aging and age‐related declines in the self‐renewal and multipotent differentiation of BMSCs. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|