Autor: |
Aleksy Schubert, Paweł Urzyczyn, Konrad Zdanowski |
Jazyk: |
angličtina |
Rok vydání: |
2017 |
Předmět: |
|
Zdroj: |
Logical Methods in Computer Science, Vol Volume 12, Issue 4 (2017) |
Druh dokumentu: |
article |
ISSN: |
1860-5974 |
DOI: |
10.2168/LMCS-12(4:11)2016 |
Popis: |
We stratify intuitionistic first-order logic over $(\forall,\to)$ into fragments determined by the alternation of positive and negative occurrences of quantifiers (Mints hierarchy). We study the decidability and complexity of these fragments. We prove that even the $\Delta_2$ level is undecidable and that $\Sigma_1$ is Expspace-complete. We also prove that the arity-bounded fragment of $\Sigma_1$ is complete for co-Nexptime. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|