On the Mints Hierarchy in First-Order Intuitionistic Logic

Autor: Aleksy Schubert, Paweł Urzyczyn, Konrad Zdanowski
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Logical Methods in Computer Science, Vol Volume 12, Issue 4 (2017)
Druh dokumentu: article
ISSN: 1860-5974
DOI: 10.2168/LMCS-12(4:11)2016
Popis: We stratify intuitionistic first-order logic over $(\forall,\to)$ into fragments determined by the alternation of positive and negative occurrences of quantifiers (Mints hierarchy). We study the decidability and complexity of these fragments. We prove that even the $\Delta_2$ level is undecidable and that $\Sigma_1$ is Expspace-complete. We also prove that the arity-bounded fragment of $\Sigma_1$ is complete for co-Nexptime.
Databáze: Directory of Open Access Journals