2-(Dimethylamino)ethyl Methacrylate/(2-Hydroxyethyl) Methacrylate/α-Tricalcium Phosphate Cryogels for Bone Repair, Preparation and Evaluation of the Biological Response of Human Trabecular Bone-Derived Cells and Mesenchymal Stem Cells

Autor: Tiago Volkmer, Joana Magalhães, Vania Sousa, Luis A. Santos, Elena F. Burguera, Francisco J. Blanco, Julio San Román, Luis M. Rodríguez-Lorenzo
Jazyk: angličtina
Rok vydání: 2014
Předmět:
Zdroj: Polymers, Vol 6, Iss 10, Pp 2510-2525 (2014)
Druh dokumentu: article
ISSN: 2073-4360
DOI: 10.3390/polym6102510
Popis: The aim of this work is to evaluate the potential of cryogels to be used as scaffolds in tissue engineering. Scaffolds based on the α-tricalcium phosphate reinforced PDMAEMA (Poly(dimethyl aminoethyl methacrylate))/PHEMA (poly(hydroxyethyl methacrylate)) system were prepared and human trabecular bone-derived cells (HTBs) and bone marrow derived-mesenchymal stem cells (BM-MSCs) cultured on them. Several features, such as porosity, pore shape, molecular weight between crosslinks and mesh size, are studied. The most suitable PDMAEMA/PHEMA ratio for cell proliferation has been assessed and the viability, adhesion, proliferation and expression of osteoblastic biochemical markers are evaluated. The PDMAEMA/PHEMA ratio influences the scaffolds porosity. Values between 53% ± 5.7% for a greater content in PHEMA and 75% ± 5.5% for a greater content in PDMAEMA have been obtained. The polymer ratio also modifies the pore shape. A greater content in PDMAEMA leads also to bigger network mesh size. Each of the compositions were non-cytotoxic, the seeded cells remained viable for both BM-MSCs and HTBs. Thus, and based on the structural analysis, specimens with a greater content in PDMAEMA seem to provide a better structural environment for their use as scaffolds for tissue engineering. The α-tricalcium phosphate incorporation into the composition seems to favor the expression of the osteogenic phenotype.
Databáze: Directory of Open Access Journals