Autor: |
Vicente Bermúdez, Pedro Piqueras, Enrique José Sanchis, Brayan Conde |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Atmosphere, Vol 15, Iss 6, p 704 (2024) |
Druh dokumentu: |
article |
ISSN: |
2073-4433 |
DOI: |
10.3390/atmos15060704 |
Popis: |
This study aims to examine the particle number (PN) emissions of a retrofitted heavy-duty spark ignition (HD-SI) engine powered by liquefied petroleum gas (LPG) under both steady-state and transient conditions. The engine was tested under seven steady-state operating points to investigate the PN behavior and particle size distribution (PSD) upstream and downstream of the three-way catalyst (TWC). This analysis intends to assess the impact of including particles with diameters ranging from 10 nm to 23 nm on the total particle count, a consideration for future regulations. The study employed the World Harmonized Transient Cycle (WHTC) for transient conditions to encompass the same engine working region as is used in the steady-state analysis. A Dekati FPS-4000 diluted the exhaust sample to measure the PSD and PN for particle diameters between 5.6 nm and 560 nm using the TSI-Engine Exhaust Particle Sizer (EEPS) 3090. The findings indicate that PN levels tend to increase downstream of the TWC under steady-state conditions in operating points with low exhaust gas temperatures and flows (equal to or less than 500 °C and 120 kg/h). Furthermore, the inclusion of particles with diameters between 10 nm and 23 nm leads to an increase in PN emissions by 17.70% to 40.84% under steady conditions and by an average of 40.06% under transient conditions, compared to measurements that only consider particles larger than 23 nm. Notably, in transient conditions, most PN emissions occur during the final 600 s of the cycle, linked to the most intense phase of the WHTC. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|