Autor: |
Dilooshi K. Weerasooriya, Ananda Y. Bandara, Sanzhen Liu, Tesfaye T. Tesso |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Crops, Vol 4, Iss 3, Pp 348-365 (2024) |
Druh dokumentu: |
article |
ISSN: |
2673-7655 |
DOI: |
10.3390/crops4030025 |
Popis: |
Acetolactate synthase (ALS) inhibitor herbicides are among widely marketed herbicide chemistries that act both against grass and broad-leaved weeds. Sorghum (Sorghum bicolor (L.) Moench) variants carrying resistance to ALS inhibitor herbicides were developed as a post-emergence weed control solution in sorghum. However, some ALS-resistant lines exhibit noticeable interveinal chlorosis at seedling stage, leading to reduced vigor. Although the plants eventually recover at an advanced growth stage, this may be a source of concern for growers and can undermine adoption of the technology. This study was initiated to identify mechanisms related to the manifestation of this phenotype. Two ALS-resistant genotypes, one displaying a yellow phenotype and the other a normal green phenotype, were cultivated, and tissue samples were collected at four time intervals, with the final sampling occurring after the genotypes had fully re-greened. RNA was extracted from the tissue samples and subjected to RNA-Seq analysis. Differential gene expression analysis was carried out using DESeq2, and a selected set of genes were confirmed via qRT-PCR. Gene Ontology enrichment and SorghumCyc pathway analysis uncovered notable regulatory changes in genes associated with chloroplasts, plant defense responses, and hormonal networks in the yellow genotypes. The pattern of gene expression strongly mimicked responses under abiotic stresses. In addition, the findings offer new insights into the potential for sorghum genotypes resistant to environmental stresses to also exhibit tolerance to a range of additional stresses. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|