Autor: |
Jun Wang, Wan-Ting He, Hai-Bo Wang, Qing Ai |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Frontiers in Physics, Vol 12 (2024) |
Druh dokumentu: |
article |
ISSN: |
2296-424X |
DOI: |
10.3389/fphy.2024.1348804 |
Popis: |
The nonadiabatic holonomic quantum computation based on the geometric phase is robust against the built-in noise and decoherence. In this work, we theoretically propose a scheme to realize nonadiabatic holonomic quantum gates in a surface electron system, which is a promising two-dimensional platform for quantum computation. The holonomic gate is realized by a three-level structure that combines the Rydberg states and spin states via an inhomogeneous magnetic field. After a cyclic evolution, the computation bases pick up different geometric phases and thus perform a holonomic gate. Only the electron with spin up experiences the holonomic gate, while the electron with spin down is decoupled from the state-selective driving fields. The arbitrary controlled-U gate encoded on the Rydberg states and spin states can then be realized. The fidelity of the output state exceeds 0.99 with experimentally achievable parameters. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|