Periodic Property and Instability of a Rotating Pendulum System

Autor: Ji-Huan He, Tarek S. Amer, Shimaa Elnaggar, Abdallah A. Galal
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Axioms, Vol 10, Iss 3, p 191 (2021)
Druh dokumentu: article
ISSN: 2075-1680
DOI: 10.3390/axioms10030191
Popis: The current paper investigates the dynamical property of a pendulum attached to a rotating rigid frame with a constant angular velocity about the vertical axis passing to the pivot point of the pendulum. He’s homotopy perturbation method is used to obtain the analytic solution of the governing nonlinear differential equation of motion. The fourth-order Runge-Kutta method (RKM) and He’s frequency formulation are used to verify the high accuracy of the obtained solution. The stability condition of the motion is examined and discussed. Some plots of the time histories of the gained solutions are portrayed graphically to reveal the impact of the distinct parameters on the dynamical motion.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje