Optimization of C-to-G base editors with sequence context preference predictable by machine learning methods

Autor: Tanglong Yuan, Nana Yan, Tianyi Fei, Jitan Zheng, Juan Meng, Nana Li, Jing Liu, Haihang Zhang, Long Xie, Wenqin Ying, Di Li, Lei Shi, Yongsen Sun, Yongyao Li, Yixue Li, Yidi Sun, Erwei Zuo
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Nature Communications, Vol 12, Iss 1, Pp 1-11 (2021)
Druh dokumentu: article
ISSN: 2041-1723
DOI: 10.1038/s41467-021-25217-y
Popis: C->G transversions can be highly desirable editing outcomes. Here the authors optimise CGBEs and provide a deep learning model for predicting editing outcomes based on sequence context.
Databáze: Directory of Open Access Journals