Autor: |
Stéphane Abide, Mikaël Barboteu, Soufiane Cherkaoui, Serge Dumont |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Fixed Point Theory and Algorithms for Sciences and Engineering, Vol 2022, Iss 1, Pp 1-22 (2022) |
Druh dokumentu: |
article |
ISSN: |
2730-5422 |
DOI: |
10.1186/s13663-022-00729-4 |
Popis: |
Abstract In this paper, we propose a semi-smooth Newton method and a primal-dual active set strategy to solve dynamical contact problems with friction. The conditions of contact with Coulomb’s friction can be formulated in the form of a fixed point problem related to a quasi-optimization one thanks to the semi-smooth Newton method. This method is based on the use of the primal-dual active set (PDAS) strategy. The main idea here is to find the correct subset A $\mathcal{A}$ of nodes that are in contact (active) opposed to those which are not in contact (inactive). For each case, the nonlinear boundary condition is replaced by a suitable linear one. Numerical experiments on both hyper-elastic problems and rigid granular materials are presented to show the efficiency of the proposed method. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|