Autor: |
Shin‐Chan Han, In‐Young Yeo, Mehdi Khaki, Christopher M. McCullough, Eunjee Lee, Jeanne Sauber |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
Earth and Space Science, Vol 8, Iss 11, Pp n/a-n/a (2021) |
Druh dokumentu: |
article |
ISSN: |
2333-5084 |
DOI: |
10.1029/2021EA001941 |
Popis: |
Abstract Following extreme drought during the 2019–2020 bushfire summer, the eastern part of Australia suffered from a week‐long intense rainfall and extensive flooding in March 2021. Understanding how much water storage changes in response to these climate extremes is critical for developing timely water management strategies. To quantify prompt water storage changes associated with the 2021 March flooding, we processed the low‐latency (1–3 days), high‐precision intersatellite laser ranging measurements from GRACE Follow‐On spacecraft and determined instantaneous gravity changes along spacecraft orbital passes. Such new data processing detected an abrupt surge of water storage approaching 60–70 trillion liters (km3 of water) over a week in the region, which concurrently caused land subsidence of ∼5 mm measured by a network of ground GPS stations. This was the highest speed of ground water recharge ever recorded in the region over the last two decades. Compared to the condition in February 2020, the amount of recharged water was similar but the recharge speed was much faster in March 2021. While these two events together replenished the region up to ∼80% of the maximum storage over the last two decades, the wet antecedent condition of soils in 2021 was distinctly different from the dry conditions in 2020 and led to generating extensive runoff and flooding in 2021. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|