Infusing theory into deep learning for interpretable reactivity prediction

Autor: Shih-Han Wang, Hemanth Somarajan Pillai, Siwen Wang, Luke E. K. Achenie, Hongliang Xin
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Nature Communications, Vol 12, Iss 1, Pp 1-9 (2021)
Druh dokumentu: article
ISSN: 2041-1723
DOI: 10.1038/s41467-021-25639-8
Popis: Machine learning faces challenges in catalyst design due to its black-box nature. Here, the authors develop a theory-infused neural network approach that integrates deep learning algorithms with the well-established d-band theory of chemisorption for reactivity prediction of transition-metal surfaces.
Databáze: Directory of Open Access Journals