Autor: |
Shih-Han Wang, Hemanth Somarajan Pillai, Siwen Wang, Luke E. K. Achenie, Hongliang Xin |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
Nature Communications, Vol 12, Iss 1, Pp 1-9 (2021) |
Druh dokumentu: |
article |
ISSN: |
2041-1723 |
DOI: |
10.1038/s41467-021-25639-8 |
Popis: |
Machine learning faces challenges in catalyst design due to its black-box nature. Here, the authors develop a theory-infused neural network approach that integrates deep learning algorithms with the well-established d-band theory of chemisorption for reactivity prediction of transition-metal surfaces. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|