On-demand engineered double-network gelatin/silicate composited hydrogels with enhanced wet adhesion and stable release of bioactive ion for promoting wound healing
Autor: | Xiaomin Luo, Lufeng Ji, Fen Ao, Chen Yang, Jiang Chang, Changyu Yin, Huijun Ren, Ming Teng, Liuying Li, Xinhua Liu |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2024 |
Předmět: | |
Zdroj: | Collagen and Leather, Vol 6, Iss 1, Pp 1-18 (2024) |
Druh dokumentu: | article |
ISSN: | 2097-1419 2731-6998 |
DOI: | 10.1186/s42825-024-00161-x |
Popis: | Abstract Silicate bioceramics have demonstrated great potential in hydrogel dressings for wound healing due to their special origins of promoting endothelial cell angiogenesis and inhibiting apoptosis of cardiomyocyte. However, there are still some deficiencies, such as insufficient biological activity, instability of silicate ion release, and lower wet adhesion on wounds with tissue exudate, limiting their further clinical applications. Herein, inspired by mussels, a multifunctional double-network hydrogel (FS/PAM-Gel-PDA) wound dressing composited gelatin with silicate ceramic powder with satisfactory wet adhesion, stable release of bioactive ions, hemostasis, and the ability of promoting vascular regeneration was engineered through specifically grafting dopamine to gelatin and introducing ferrous silicate ceramic powder into the hydrogel. The comprehensive experimental results substantiate that the FS/PAM-Gel-PDA has wet-adhesion strength of up to 21.78 kPa, and remains stably adherent to porcine myocardial tissues intuitively after bending, twisting, soaking in water, and stretching. The test results of ion release behavior in vitro show that the oxidation and agglomeration of ferrous silicate ceramic powder can be effectively inhibited by using dopamine to form an antioxidant layer on the surface of ceramic powder, and thus, the stable release of Fe2+ and SiO4 4− effective ions can be realized. The animal experiment exhibits that FS/PAM-Gel-PDA can achieve rapid hemostasis in the lethal liver defect model. Meanwhile, the FS/PAM-Gel-PDA reveals the remarkable ability to promote wound healing in a full-thickness skin injury model, which can obviously accelerate skin re-epithelialization. To sum up, the FS/PAM-Gel-PDA has excellent wet adhesion and stable release of active ions to accelerate angiogenesis, which shows great potential in promoting wound healing. Graphical Abstract |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |