Irradiation effects on binary tungsten alloys at elevated temperatures: Vacancy cluster formation, precipitation of alloying elements and irradiation hardening

Autor: Jing Wang, Yuji Hatano, Takeshi Toyama, Tatsuya Hinoki, Kiyohiro Yabuuchi, Yi-fan Zhang, Bing Ma, Alexander V. Spitsyn, Nikolay P. Bobyr, Koji Inoue, Yasuyoshi Nagai
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Materials & Design, Vol 229, Iss , Pp 111899- (2023)
Druh dokumentu: article
ISSN: 0264-1275
DOI: 10.1016/j.matdes.2023.111899
Popis: Irradiation responses of binary W alloys were investigated systematically from the perspective of the binding energy of an alloying element with a W self-interstitial atom (W-SIA). Plates of W, W-0.3 at.% Cr, W-5 at.% Re, W-2.5 at.% Mo and W-5 at.% Ta alloys were irradiated at 1073 K with 6.4 MeV Fe ions to 0.26 dpa at the damage peak, where the binding energy of alloying element with W-SIA is in order of Cr > Re > Mo > Ta. The formation of vacancy-type defects (vacancies and vacancy clusters) was studied by using positron lifetime measurement. The precipitation of alloying elements was studied by using atom probe tomography (APT) and the hardness changes in the irradiated volumes were measured by the nanoindentation technique. The formation of vacancy-type defects was strongly suppressed by the addition of Cr and Re, while Ta and Mo had no noticeable suppression effect. The APT measurements showed fine Cr- and Re-rich precipitates in W-0.3 at.% Cr and W-5 at.% Re alloys, respectively, where the density of precipitates in the latter was clearly lower than that in the former. The distributions of Mo and Ta were uniform even after irradiation. Irradiation hardening was observed for all materials but that of W-5 at.% Re alloy was significantly smaller than the hardening of W, W-2.5 at.% Mo and W-5 at.% Ta alloys. These observations suggest that the irradiation hardening of W, W-2.5 at.% Mo, and W-5 at.% Ta alloys were mainly caused by vacancy-type defects. It was concluded that an alloying element with moderate binding energy with a W-SIA effectively suppresses vacancy formation without significantly enhanced precipitation and consequently mitigates irradiation hardening.
Databáze: Directory of Open Access Journals